
Available online at www.sciencedirect.com
Journal of Computational Physics 227 (2007) 1372–1386

www.elsevier.com/locate/jcp
ELLAM for resolving the kinematics of two-dimensional
resistive magnetohydrodynamic flows

Jiangguo Liu a,*, Simon Tavener a, Hongsen Chen b

a Department of Mathematics, Colorado State University, Fort Collins, CO 80523-1874, USA
b Institute for Scientific Computation, Texas A&M University, College Station, TX 77843-3404, USA

Received 18 September 2006; received in revised form 18 April 2007; accepted 6 September 2007
Available online 21 September 2007
Abstract

We combine the finite element method with the Eulerian–Lagrangian Localized Adjoint Method (ELLAM) to solve the
convection–diffusion equations that describe the kinematics of magnetohydrodynamic flows, i.e., the advection and diffu-
sion of a magnetic field. Simulations of three two-dimensional test problems are presented and in each case we analyze the
energy of the magnetic field as it evolves towards its equilibrium state. Our numerical results highlight the accuracy and
efficiency of the ELLAM approach for convection-dominated problems.
� 2007 Elsevier Inc. All rights reserved.
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1. Resistive MHD equations

Magnetohydrodynamics is the study of the interactions between magnetic fields and flows of electrically
conducting fluids, typically liquid metals or plasmas. The equations governing MHD are a combination of
the Navier–Stokes equations for fluid motion and the Maxwell equations for electromagnetism. The simplest
MHD model is that of ideal MHD, which ignores the magnetic diffusion (resistivity). When the diffusion terms
are retained, the model is referred to as resistive MHD.

We consider the flow of an inviscid conducting fluid in a magnetic field. Let q be the density of the liquid
metal or plasma, v be its velocity, B the magnetic field, E the total energy density, and em the magnetic diffu-
sion coefficient. We use | Æ | for the Euclidean 2-norm of a vector and � for the tensor product of two vectors.
The equations of conservation of mass, momentum, and energy of the fluid motion are, respectively [10,27],
0021-9991/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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qt þr � ðqvÞ ¼ 0; ð1Þ
ðqvÞt þr � ðqv� v� B� BÞ þ rp� ¼ 0; ð2Þ

Et þr � ½ðE þ p�Þv� ðv � BÞB� ¼ emjr � Bj2; ð3Þ

where the energy E is defined as [13,27]
E ¼ p
c� 1

þ q
jvj2

2
þ jBj

2

2
: ð4Þ
Here c ¼ cp=cv is the ratio of specific heats. The total pressure p� consists of a thermal contribution p (also
referred to as the gas pressure) and a magnetic contribution, and can be explicitly written as
p� ¼ p þ jBj
2

2
: ð5Þ
The magnetic field evolves according to the magnetic field induction equation
Bt ¼ r� ðv� BÞ þ emDB; ð6Þ

and is divergence-free, i.e.,
r � B ¼ 0; for all t P 0: ð7Þ

The development of efficient numerical methods for solving MHD problems has been the focus of consider-
able research effort, see [1,2,5,9,13,17,19,21,27] and the references therein. For the ideal MHD model in which
the magnetic diffusion em ¼ 0, these equations can be formulated as a first order hyperbolic system and the
whole system solved numerically, see [13]. However, for resistive MHD, due to the nonzero diffusion terms
in Eqs. (3) and (6), we ought to investigate approaches other than converting the equations to a first order
hyperbolic system.

Similar to the divergence-free condition in incompressible hydrodynamics, a major difficulty in solving the
MHD equations is to ensure that the magnetic field is divergence-free. A variety of divergence ‘‘cleaning’’ tech-
niques have been developed in numerical methods for MHD equations, see [2,5,9]. Another approach is to
express the magnetic field as the curl of a vector potential A, i.e., to define B :¼ $ · A = curlA. This approach
is particularly convenient in two dimensions, where A ¼ ð0; 0;A3Þ and B ¼ ðB1;B2; 0Þ ¼ ðoA3=oy;�oA3=ox; 0Þ.
If the fluid is incompressible ðr � v ¼ 0Þ, then Eq. (6) reduces to the scalar convection–diffusion equation
ðA3Þt þr � ðvA3Þ � emDA3 ¼ 0: ð8Þ

In this paper, we focus on the magnetic induction Eq. (8) and develop an efficient numerical method for this
equation assuming the velocity field is prescribed and incompressible. We thereby study the kinematics of
MHD flows and do not consider the influence of the magnetic field on the velocity field. This idealizes
the situation in which the ratio of the Lorentz force to inertia is small. This ratio is also quantified as
the interaction parameter N ¼ rjBj2l=ðqjvjÞ, where r is the electrical conductivity and l is the characteristic
length. A similar assumption is made in [16] to investigate the kinematic dynamo regime of MHD. Apart
from the fundamental role of kinematics in MHD, one could solve the magnetic induction equation as part
of an operator decomposition process in which the magnetic field is computed based on a given velocity
field and the velocity field is then modified in response to the new magnetic field, and the entire process
iterated until convergence. Accurate and stable numerical methods are clearly needed in both steps of such
an operator decomposition process, as well as efficient strategies for monitoring and controlling coupling
errors [7].

Convection-dominated convection–diffusion equations like Eq. (8) arise in many other applications includ-
ing the transport of solutes in groundwater and surface water and the displacement of oil by fluid injection in
oil recovery. Numerical simulations for these problems have to resolve spatial structures like contact discon-
tinuities, current sheets, shocks, or steep fronts. This kind of singularities poses serious challenges to numerical
methods. Standard finite difference or finite element methods produce either excessive nonphysical oscillations
or extra numerical diffusion, which smears these physical features. ELLAM as well as many other numerical
methods, have been developed to meet these challenges.
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The rest of this paper is organized as follows. In Section 2, we present the ELLAM finite element method.
Section 3 reports numerical experiments on applying the numerical method to three common test cases for
MHD eddy flows. The paper is concluded with some discussions in Section 4.

2. ELLAM for convection–diffusion problems

Convection-dominated convection–diffusion equations like Eq. (8) exhibit both hyperbolic features due to
the convection dominance ðjvj � emÞ and parabolic features due to the nonzero diffusion em 6¼ 0. The Euleri-
an–Lagrangian Localized Adjoint Method (ELLAM) [8,20,25] exploits the hyperbolic features of convection–
diffusion equations by employing space-time test functions that are based on the local velocity field. By per-
forming temporal discretization along characteristics, ELLAM is able to reduce the temporal truncation error.
As an implicit method, ELLAM is unconditionally stable and hence not subject to the severe restrictions
imposed by the Courant–Friedrichs–Lewy (CFL) condition. These factors combine to enable ELLAM to gen-
erate accurate and stable numerical solutions even when large time steps are used. Moreover, ELLAM pro-
vides a general framework for convection–diffusion-reaction equations and implementations based on finite
element methods, wavelet methods, and other numerical methods have been developed [8,14,25]. Russell
and Celia [20] provided a recent overview of research on ELLAM and its applications.

In this section, we present a finite element method implementation of ELLAM for the linear convection–
diffusion equation. Consider
ut þr � ðvu�DruÞ ¼ f ðx; tÞ; x 2 X; t 2 ð0; T �
with appropriate boundary conditions;

uðx; 0Þ ¼ u0ðxÞ; x 2 X;

8><
>: ð9Þ
where X 	 Rd ðd ¼ 1; 2; 3Þ is a domain with boundary C :¼ oX. Here uðx; tÞ is an unknown scalar-valued
function, v(x,t) a prescribed velocity field, D(x,t) a diffusion-dispersion tensor, and f(x,t) a source/sink term.

Let CI; CO; and CN be, respectively, the inflow, outflow, and noflow boundaries identified by
CI :¼ fxjx 2 C; v � n < 0g;
CO :¼ fxjx 2 C; v � n > 0g;
CN :¼ fxjx 2 C; v � n ¼ 0g

ð10Þ
where n is the unit outward normal vector on C. Dirichlet, Neumann, or Robin (total flux) conditions can be
applied within the ELLAM framework on any of these boundary types [25]. We represent these boundary con-
ditions using the notations
uðx; tÞ ¼ gtype
1 ðx; tÞ; ðx; tÞ 2 Ctype ðDirichletÞ;

�Druðx; tÞ � n ¼ gtype
2 ðx; tÞ; ðx; tÞ 2 Ctype ðNeumannÞ;

ðvu�DruÞðx; tÞ � n ¼ gtype
3 ðx; tÞ; ðx; tÞ 2 Ctype ðRobinÞ;

ð11Þ
where type ¼ I;O;N represents an inflow, outflow, or noflow boundary type, respectively. For the magnetic
induction equation, we shall consider both Dirichlet and Neumann boundary conditions, which correspond to
the perfectly conducting or the perfectly insulating boundary conditions for the magnetic field, respectively.

Let 0 ¼ t0 < t1 < � � � < tn�1 < tn < � � � < tN ¼ T be a partition of ½0; T � with Dtn :¼ tn � tn�1. We multiply
Eq. (9) by test functions wðx; tÞ that vanish outside the space-time strip X� ðtn�1; tn� and are discontinuous
in time at time tn�1. Integration by parts leads to the weak form
Z

X
uðx; tnÞwðx; tnÞdxþ

Z tn

tn�1

Z
X
ðDruÞ � rwdxdt þ

Z tn

tn�1

Z
oX
ðvu�DruÞ � nwdS dt

�
Z tn

tn�1

Z
X

uðwt þ v � rwÞdx dt ¼
Z

X
uðx; tn�1Þwðx; tþn�1Þdxþ

Z tn

tn�1

Z
X
ðfwÞðx; tÞdx dt; ð12Þ
where dS is the differential element on oX and wðx; tþn�1Þ :¼ limt!tþ
n�1

wðx; tÞ arises from the fact that wðx; tÞ are
discontinuous in time at time tn�1.
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ELLAM takes advantage of the hyperbolic features of convection–diffusion equations by requiring that test
functions satisfy the adjoint equation
Fig. 1.
xi�1; x
wt þ v � rw ¼ 0: ð13Þ

This eliminates the last term on the left side of the weak form and implies that test functions are constants
along characteristics defined by initial value problems of ordinary differential equations
dy

ds ¼ vðyðs; x; tÞ; sÞ;
yðs; x; tÞjs¼t ¼ x:

(
ð14Þ
Fig. 1 illustrates a one-dimensional ELLAM test function, which is defined in the space-time strip X� ðtn�1; tn�.
It is specified as a piecewise polynomial (in the spatial variables) at time tn and a constant along each
characteristic.

Special considerations must be made when characteristics intersect with the domain boundaries. As illus-
trated in Fig. 2, we first define CI

n :¼ CI � ½tn�1; tn�; CO
n :¼ CO � ½tn�1; tn�; and CN

n :¼ CN � ½tn�1; tn�. For any
x 2 X, if ðx; tnÞ backtracks along a characteristic to ðx�; t�Þ 2 CI

n ðwhere t� > tn�1Þ, we define DtIðx; tnÞ :¼
tn � t�. Otherwise DtIðx; tnÞ :¼ tn � tn�1. Similarly, if any ðy; tÞ 2 CO

n backtracks along a characteristic to
ðy�; t�Þ 2 CI

n (for t� > tn�1), we define DtOðy; tÞ :¼ t � t�. Otherwise DtOðy; tÞ :¼ t � tn�1. All four cases are shown
in Fig. 2 where


 A1B1 goes from the domain to the domain;

 A2D1 goes from the domain to the outflow boundary;

 C1B2 goes from the inflow boundary to the domain; and

 C2D2 goes from the inflow boundary to the outflow boundary.
n–1

n

t

x x x

*

i–3 i–2 i–1 i x

t

x

i+1

x i+1

t
x x x* *

ii–1

An illustration of a one-dimensional ELLAM test function, where x�i�1; x�i ; x�iþ1 are the feet of the characteristics emanating from

i; xiþ1.

Fig. 2. Characteristics and flows.
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By employing the backward Euler quadrature on X at time tn and CO
n , the second term on the right side of

(12) becomes
Z tn

tn�1

Z
X

f ðx; tÞwðx; tÞdx dt ¼
Z

X
DtIðx; tnÞf ðx; tnÞwðx; tnÞdxþ

Z
CO

n

DtOðy; tÞf ðy; tÞwðy; tÞðv � nÞdS þ Eðf ;wÞ;
where Eðf ;wÞ is a truncation error term [25]. Similarly, the diffusion term can be evaluated as
Z tn

tn�1

Z
X
ððDruÞ � rwÞðx; tÞdx dt ¼

Z
X

DtIðx; tnÞððDruÞ � rwÞðx; tnÞdx

þ
Z

CO
n

DtOðy; tÞððDruÞ � rwÞðy; tÞðv � nÞdS þ EðD; u;wÞ;
where EðD; u;wÞ is an error term.
As discussed in [24,25], the error terms Eðf ;wÞ and EðD; u;wÞ are small under certain regularity conditions

on the given data. Dropping the error terms in the source and diffusion terms and breaking up the boundary
term, we obtain the following problem: Find uðx; tÞ 2 H 1ðX� ðtn�1; tn�Þ such that for any wðx; tÞ 2 H 1ðX�
ðtn�1; tn�Þ satisfying the adjoint Eq. (13),
Z

X
uðx; tnÞwðx; tnÞdxþ

Z
X

DtIðx; tnÞðDru � rwÞðx; tnÞdxþ
Z

CO
n

DtOðy; tÞðDruÞ � rwÞðy; tÞðv � nÞdS

þ
Z

CO
n

ðvu�DruÞ � nwðy; tÞdS þ
Z

CI
n

ðvu�DruÞ � nwðy; tÞdS

¼
Z

X
uðx; tn�1Þwðx; tþn�1Þdxþ

Z
X

DtIðx; tnÞf ðx; tnÞwðx; tnÞdxþ
Z

CO
n

DtOðy; tÞf ðy; tÞwðy; tÞðv � nÞdS: ð15Þ
For the first term on the right side of (15), replacing the dummy variable x by x*, we rewrite the term as
Z
X

uðx�; tn�1Þwðx�; tþn�1Þdx� ¼
Z

X
uðx�; tn�1Þwðx; tnÞJðx�; xÞdx; ð16Þ
where x� ¼ yðtn�1; x; tnÞ is obtained by backtracking ðx; tnÞ along a characteristic to time tn�1 and Jðx�; xÞ is the
Jacobian.

It is known from the discussion in [15] that for a backtracking characteristic y ¼ yðs; x; tÞ; s 6 t,
exp �
Z t

s
kr � vð�; rÞk1 dr

� �
6 Jðy; xÞ 6 exp

Z t

s
kr � vð�; rÞk1 dr

� �
; ð17Þ
so we have
Jðx�;xÞ ¼ 1þOðDtÞ:

In particular, Jðx�; xÞ ¼ 1 in (16), if the velocity field is divergence-free. Otherwise, there will be some delicate
technical treatments for computing the Jacobian.

As discussed in [4,25], the first term on the right side of the reference Eq. (15) can also be evaluated based on
forward tracking along characteristics of finite element quadrature points.

Error estimates about ELLAM can be found in [24] and the references therein. It is proved in [24] that
under the following assumptions

(1) D ¼ Dðx; tÞI2�2 and there exist positive constants Dmin and Dmax such that 0 < Dmin 6 Dðx; tÞ 6
Dmax <1; 8ðx; tÞ 2 X� ½0; T �;

(2) Dðx; tÞ; f ðx; tÞ 2 W 1
1ðX� ð0; T ÞÞ and vðx; tÞ 2 ðW 1

1ðX� ð0; T ÞÞÞ
2,

(3) The solution uðx; tÞ 2 L1ð0; T ; W 2
1ðXÞÞ and utðx; tÞ 2 L2ð0; T ; H 2ðXÞÞ.

ELLAM with bilinear elements on a rectangular mesh for the two-dimensional convection–diffusion Eq. (9)
has the following error estimates
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kUh;Dt
T ðxÞ � uT ðxÞkL2ðXÞ 6 Cðh2 þ DtÞ;
where C is a constant independent of h and Dt.
Summarizing, ELLAM is an efficient method for solving convection-dominated convection–diffusion prob-

lems owing to the following features.

(1) Relatively large time steps can be used since ELLAM is not subject to the severe restrictions imposed by
the CFL condition.

(2) In situations when convection dominates, the discrete linear system is well-conditioned requiring no pre-
conditioning for iterative solvers.

(3) Interpreting the unknown function as the concentration of a substance being transported by a flow, it
has been shown [8,25] that ELLAM is globally mass-conservative.

(4) Since the adjoint equation governing the test functions carries information along characteristics,
ELLAM can efficiently resolve steep fronts in solutions without using extremely fine meshes.

(5) As an operator splitting method, ELLAM decouples convection and diffusion processes. Convection is
split into the adjoint equation, which becomes an ODE along characteristic directions and is usually
solved explicitly. Diffusion is kept in the weak formulation of elliptic type, which is solved implicitly.

For the applications in this paper, we assume X is a two-dimensional rectangular domain and T h is a
rectangular mesh. Let Sh ¼ ShðXÞ be the finite dimensional subspace of continuous piecewise bilinear poly-
nomials associated with the partition T h. Approximating uðx; tnÞ from Sh and taking test functions
wðx; tnÞ 2 Sh, we obtain a discrete linear system from (15). Furthermore, the coefficient matrix of the linear
system is a 9-banded symmetric positive definite matrix and the linear system can be solved by the conjugate
gradient method.

3. Numerical experiments

In this section, we report our numerical experiments on three benchmark examples (with slight modifica-
tions) that are also studied in [27].

For all three examples, we consider a spatial domain X ¼ ½�0:5; 0:5�2 and a time period ½0; T � ¼ ½0; 10�.
ELLAM is used with a 64 · 64 rectangular mesh with bilinear ðQ1Þ elements and a relatively large time step
Dt ¼ 0:1. The second-order Gaussian quadrature is used in numerical integrations for finite elements. All
velocity fields in these three examples are nonlinear, that is, Eq. (14) is a nonlinear ODE in y. Since no explicit
expressions are available for finding the characteristics, we employ numerical methods for characteristic track-
ing. Here we apply the second order Runge–Kutta (Heun method), with 4 micro steps within each macro time
step. The three velocity fields we examined are all divergence-free, so Jðx�; xÞ ¼ 1 in Eq. (16), thereby avoiding
technical treatments in computing the Jacobian.

The velocity fields for all three examples are shown in Fig. 3. The common initial condition shown in Fig. 4
is
ðA3Þjt¼0 ¼ 0:5� x;
which corresponds to an initial (horizontally) uniform magnetic field. The common boundary conditions are
posed as
ðA3Þjx¼�0:5 ¼ 1; ðA3Þjx¼0:5 ¼ 0;
oA3

on

����
y¼�0:5

¼ oA3

on

����
y¼0:5

¼ 0:
Notice that the first two boundary conditions imply that B Æ n = 0, i.e., the left and right sides of the rectan-
gular domain are perfectly insulating for the magnetic field. The last two boundary conditions are equivalent
to B · n = 0, which means the top and bottom sides of the domain are perfectly conducting for the magnetic
field.

For each example, we present color images for the magnetic potential function and profiles of the magnetic
field lines, i.e., contour plots of the magnetic potential function, at some typical time moments. For the con-



–0.5 –0.4 –0.3 –0.2 –0.1 0 0.1 0.2 0.3 0.4 0.5
–0.5

–0.4

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.4

0.5

–0.5 –0.4 –0.3 –0.2 –0.1 0 0.1 0.2 0.3 0.4 0.5
–0.5

–0.4

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.4

0.5

–0.5 –0.4 –0.3 –0.2 –0.1 0 0.1 0.2 0.3 0.4 0.5
–0.5

–0.4

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.4

0.5

Fig. 3. Quiver plots for the imposed velocity fields in Examples 1–3.
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tour plots, we use values from 0.0 to 1.0 with an increment 0.05, but only the contours for 0.1, 0.3, 0.5, 0.7, 0.9
are labeled.

Example 1 (A single eddy). The velocity field is prescribed as
vðx; yÞ ¼ cosðpxÞ
p

32yð1� 4y2Þ3;� sinðpxÞð1� 4y2Þ4
� �

;

and is shown in the left subplot of Fig. 3. It has a center at the origin and all four sides of the domain are
noflow boundaries. The resistivity em ¼ 10�3.

Given the small value of the resistivity, the magnetic field is strongly convected by the flow and the field
lines should be nearly ‘‘frozen’’ in the fluid. Our numerical results clearly show that at the beginning the mag-
netic field is dragged around by the eddy and the magnetic field energy rises. Then the magnetic flux is expelled
away from the single eddy and concentrates around the edges of the eddy, and the field energy decreases. Then
the magnetic field approaches its steady state, and the field energy stabilizes for large t, see Fig. 5 and the left
subplot of Fig. 9. This phenomenon is known as flux expulsion by which the magnetic field in any region of
closed streamlines is gradually expelled and is the MHD analogue of the Prandtl–Batchelor theorem for two-
dimensional viscous flows.

Example 2 (A 4-cell convection). This example dates back to 1966 [10,26,27] as one of the first studies to
address the role of the magnetic field in a convecting plasma. Starting from a vertically uniform magnetic field
(the initial condition), we simulate the distortion of the magnetic field by a cellular convection. The velocity
field is
vðx; yÞ ¼ ð� sinð2pxÞ cosð2pyÞ; cosð2pxÞ sinð2pyÞÞ;
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Fig. 5. Plots of the magnetic potential for Example 1 at t = 1, 2, 3, and 10.
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and is shown in the middle subplot of Fig. 3. It has a saddle point at the origin and four centers located at
(0.25, 0.25), (�0.25, 0.25), (�0.25,�0.25), and (0.25,�0.25). All four sides of the domain are again noflow
boundaries. The resistivity em ¼ 5� 10�4.
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Fig. 6. Plots of the magnetic potential for Example 2 at t ¼ 1
2
; 1; 3; and 5.
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Fig. 7. Plots of the magnetic potential for Example 3 at t ¼ 1
2
; 1; 3; and 5.
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The magnetic field is distorted by the four convective cells. Magnetic reconnection takes place between
t ¼ 1 and t ¼ 3 in the regions of strong currents. The term ‘‘magnetic reconnection’’ refers to a process in
which magnetic field lines from different magnetic domains are spliced to one another, changing the overall
topology of a magnetic field. In this process, magnetic field energy is converted to plasma kinetic and thermal
energy [19].

Example 3 (A band of 4 eddies). The velocity field is
vðx; yÞ ¼ ð1� 4x2Þ4 cosð4pyÞ; 8xð1� 4x2Þ3 sinð4pyÞ
p

� �
;

and appears as the right subplot in Fig. 3. The resistivity em ¼ 10�3. Once again we observe the magnetic field
lines being convected by the flow, formation of sharp layers, and flux expulsion.

In conclusion, all three examples clearly show the expected formation of boundary and internal layers of
width Oð ffiffiffiffiffiem

p Þ arising due to the dominance of convection over diffusion [18,22]. All three examples show
the effect of flux expulsion resulting in magnetic flux becoming concentrated at edges of the convective cells
(see Fig. 8).

Recall that the magnetic field energy is defined as
Z
X

jBj2

2
dxdy:
With the above discretization, the evolutions of the magnetic field energy in these three examples are shown in
Fig. 9. In Example 1, the magnetic field energy reaches its peak at around t ¼ 1:7 and then appears to ap-
proach a constant or steady-state value as a balance is achieved between convection and diffusion. The two
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Fig. 9. Time evolution of the magnetic field energy in Examples 1–3.

Fig. 8. Sharp fronts exhibited in the solutions of Examples 1–3 at time t ¼ 1.
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Fig. 10. The first and second order finite differences of the magnetic field energy in Example 1.
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plots in Fig. 10 approximate the first and second derivatives of the magnetic field energy for Example 1 for
5 < t < 30 and confirm the convergence to equilibrium. In Example 2, the field energy shows similar behavior
but the oscillations are less well damped. In Example 3, the magnetic field energy reaches its peak at around
t ¼ 1:3 and then decays towards its equilibrium value. Thus all three examples appear to stabilize and ap-
proach their steady-state solutions.

Convergence towards steady-state solutions. In problem (9), if v, D, f and the boundary conditions do not
dependent on t, then the corresponding steady-state convection–diffusion problem is
r � ðvu�DruÞ ¼ f ðxÞ; x 2 X;

the same time-independent boundary conditions;

�
ð18Þ
which is linear in the unknown scalar u and hence has a unique solution under certain regularity conditions on
the given data.

Let uT ðxÞ be the exact solution of the time-dependent problem (9) at time T and uSðxÞ be the exact solution
of the steady-state problem (18). Consider the situation in which the time-dependent solution evolves towards
the steady-state solution, i.e.,
lim
T!1

uT ðxÞ ¼ uSðxÞ; x 2 X: ð19Þ
Let T h be a quasi-uniform partition of the spatial domain X with mesh size h and Dt be the time step size for a
partition of the time period ½0; T �. Furthermore, let UT

h;DtðxÞ be a numerical solution of the time-dependent
problem (9), and U S

hðxÞ a numerical solution of the steady-state problem (18). As has been shown in [24], solv-
ing the two-dimensional convection–diffusion Eq. (9) using ELLAM with bilinear elements on a rectangular
mesh gives rise to the following error estimates
kUT
h;DtðxÞ � uT ðxÞkL2ðXÞ 6 Cðh2 þ DtÞ; ð20Þ
where C is a constant independent of h and Dt. Similar error estimates for the steady-state problem can be
found in the literature and hence we have
lim
h!0;Dt!0

U T
h;DtðxÞ ¼ uT ðxÞ and lim

h!0
U S

hðxÞ ¼ uSðxÞ: ð21Þ
From (19), (21), and the following inequality
kUT
h;DtðxÞ � US

hðxÞk 6 kU T
h;DtðxÞ � uT ðxÞk þ kuT ðxÞ � uSðxÞk þ kuSðxÞ � US

hðxÞk; ð22Þ
we expect kUT
h;DtðxÞ � US

hðxÞk to be small when T is large enough and h;Dt are small enough.
We solve the steady-state problem (18) with the same (time-independent) boundary conditions using bilin-

ear elements on the same rectangular mesh as was used to compute numerical solutions of the time-dependent
problem and present comparison results in Table 1. We do not include the plots of the steady-state solutions,
since they are graphically indistinguishable from the final time solutions in Figs. 5–7. The convergence of the



Table 1
Comparison of time-dependent numerical solution UT

h;Dt and steady-state numerical solution US
h : h ¼ 1=64;Dt ¼ 0:1

kUT
h;Dt � US

hk Example 1 Example 2 Example 3

L1 L2 L1 L2 L1 L2

T ¼ 5 3.168E�1 6.607E�2 5.322E�2 6.558E�3 4.866E�2 1.167E�2
T ¼ 10 1.318E�1 2.707E�2 5.681E�2 6.152E�3 6.668E�3 1.398E�3
T ¼ 30 4.393E�2 7.527E�3 5.673E�2 6.161E�3 5.505E�3 1.081E�3
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time-dependent solution to the equilibrium solution that is suggested by the plots of the magnetic field energy
is supported by the table below.

Notice that the L1- and L2-norms of a continuous piecewise bilinear polynomial on a rectangular mesh can
be computed exactly. For each Q1 element, as a linear combination of the basis functions 1; x; y; xy, the shape
function is a harmonic function and hence satisfies the Maximum Principle. So the L1-norm of the piecewise
bilinear polynomial is the l1-norm of the sequence of its absolute nodal values. The Gram matrix of the basis
functions is used to exactly compute the L2-norm of the shape function. However, the L1-norm could not be
computed exactly, unless the bilinear polynomial does not change sign on the mesh.

4. Discussion

To the best of our knowledge, this study represents the first application of ELLAM to problems arising in
magnetohydrodynamics. The three test problems studied here were previously studied in [27] using a moving
mesh method. Those computations were performed with an initially uniform rectangular mesh with 70 · 70
elements and a very small time step size Dt ¼ 10�3. At each time step, a new mesh is formed by solving a
set of elliptic equations in order to minimize a ‘‘mesh-energy’’ functional. The PDEs governing the physics
of the flow are then solved by an explicit-implicit numerical method and the resulting discrete linear system
solved by BiCGStab. The moving mesh aligns with the features of the solution quite well, but forming the
mesh is costly and the mesh calculations also place restrictions on the size of the time step.

In this paper, we apply ELLAM with a similar mesh (64 · 64 rectangular elements) but with a time step that
is two orders of magnitude larger, i.e., Dt ¼ 0:1, and obtain comparable numerical results. Moreover, no pre-
conditioning is needed for our numerical method due to the fact that the equation is convection-dominated
and the linear system after discretization is well-conditioned.

Adaptive treatments can be applied to each of the three major ingredients of the Galerkin finite element
framework, namely mesh, trial functions, and test functions. In the static adaptive mesh refinement (h-refine-
ment) methods, the locations of a majority of nodes/elements are fixed. Few nodes are added or removed
based on some a posteriori error estimates. The moving mesh techniques (r-refinement) investigated in
[3,12,27] (and the references therein) dynamically form a new mesh for each time step based on a mesh-energy
functional. The p-refinement techniques adaptively adjust the degree of the polynomials in trial functions.
ELLAM relies on ‘‘smart’’ test functions that carry adaptivity information along the directions of streamlines.
The efficiency of ELLAM could be further enhanced by incorporating h-refinement techniques. This is being
investigated and will be reported in our future work.

Spectral methods usually perform very well when solving differential equations with homogeneous or peri-
odic boundary conditions on tensor-product type meshes. As discussed in [6,23], the global nature of the spec-
tral methods has delayed their development for problems exhibiting very localized phenomena, such as sharp
fronts and boundary layers in convection-dominated diffusion equations, or shock waves in hyperbolic prob-
lems. In these situations, the spectral accuracy must be balanced against severe stability requirements. A spec-
tral method combined with characteristic tracking for hyperbolic problems and convection–diffusion problems
was developed in [23] under the restrictions of periodic boundary conditions and rectangular meshes. Spectral
methods for hyperbolic problems and convection–diffusion problems on unstructured grids were presented in
[11]. The convective operator results in a restriction on the time-step that is necessary to maintain stability of
the spectral methods. ELLAM discussed in this paper is an efficient numerical method specially designed for
convection-dominated diffusion problems. It naturally incorporates unstructured meshes and all kinds of
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boundary conditions in its formulation, has the optimal approximation accuracy (not the spectral accuracy
though), and is unconditionally stable.

As shown in this paper, the divergence-free property of the magnetic field is an important physical property
that should be respected by numerical methods. Besides introducing a scalar/vector potential, another
approach is to use the locally divergence-free (LDF) finite elements. Then the discontinuous Galerkin method
comes into play very naturally. Combining the LDF finite elements and the discontinuous Galerkin method to
solve the ideal MHD equations has been reported in [13]. We are investigating solution techniques for the
resistive MHD based on the discontinuous Galerkin method and the LDF finite elements.

The three test cases presented in this paper demonstrate the one-way coupling of the velocity v on the mag-
netic field B. In our future work, we will further investigate computations of the velocity field given the mag-
netic field, and convergence and error control of iterative schemes to solve the fully coupled nonlinear MHD
problems.
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